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Abstract 

Chin, A., Permutations on the Block PRAM, Information Processing Letters 45 (1993) 69-73. 

In present-day parallel computers, the complexity of permuting N data items in shared memory varies, depending on 

whether large blocks can be used for communication. The Block PRAM model of Aggarwal, Chandra and Snir is unique 

among shared-memory models of parallel computation in modeling this phenomenon. We characterize the Block PRAM 

complexity of some useful classes of permutations, improving known results. 

Keywords: Computational complexity; Block PRAM; communication latency; parallel computational complexity; permuta- 
tion routing 

1. Introduction 

Distinct processors working together on the 
same problem need to communicate from time to 
time. In present-day parallel computers, this com- 
munication must take place through a physical 
network and is subject to considerable latency. 
Because of this latency, parallel computations are 
most efficient when large blocks are used for 
communication. 

The Block PRAM [2] was recently introduced 
by Aggarwal, Chandra and Snir as a model of 
parallel computation accounting for the effect of 
communication latency on computational com- 
plexity. The model assumes that interprocessor 
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communication takes place through shared mem- 
ory locations, thereby abstracting the issue of 
communication latency away from the topology of 
the interprocessor network. 

Block PRAM description. A Block PRAM is a 
collection of p processors, each with a local 
memory, together with a shared memory. All 
processors execute the same program, although a 
processor may wait instead of executing a given 
instruction. Each arithmetic operation and access 
to a local memory location can be performed in 
unit time. Accesses to shared memory are subject 
to a delay 1 due to communication latency, where 
1 is a multiple of instruction cycles. A processor 
may access a block of b consecutive locations in 
the global memory in time 1 + b. No read or write 
conflicts are allowed: concurrent requests for 
overlapping blocks are serviced sequentially in 
some arbitrary order. 

The natural data structure in the Block PRAM 
is the user-defined array, consisting of a block of 
shared memory locations with consecutive logical 
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addresses. Data in the Block PRAM shared 
memory is addressed according to its location in 
the relevant array. To create blocks of data for 
communication across the shared memory, it is 
often necessary to permute the data in an array. 

In this paper, we characterize the complexity 
of performing specific frequently used permuta- 
tions on the Block PRAM. As in [2], it is assumed 
that the permutation to be performed is known in 
advance, so that the only operation required is 
the movement of the array data in the shared and 
local memories. The resulting algorithms are said 
to be conservative. A computation is conservative 
if the only operation allowed is that of copying 
elements in memory. 

For convenience throughout this paper, we 
assume p and 1 are integral powers of 4, affecting 
our bounds by at most a constant factor. All 
logarithms will be base 2. 

2. Rational permutations 

A permutation II on (0, 1,. . . ,2k - 1) z (0, ilk 
is rational [l] if it can be expressed as a permuta- 
tion ?-r in the bit positions; i.e., n((x,, . . . , xk>> = 

(X T(i)? *. .) xTckj). By convention, we write the 
most significant bit first. If a rational permutation 
is denoted by a capital Greek letter, we denote its 
associated bit permutation by the corresponding 
lower-case Greek letter. 

Rational permutations are the permutations 
most often studied in the literature as network 
routing problems. Matrix transpositions and per- 
fect shuffles are examples of rational permuta- 
tions. Standard deterministic permutation algo- 
rithms on specific networks [3,7,9-121, and the 
optimal Block PRAM permutation algorithm [2] 
amount to factoring an arbitrary permutation into 
a product of rational permutations. 

In this section, we show that the complexity of 
performing a given rational permutation on the 
Block PRAM can be characterized in terms of its 
crossing number, as defined below. 

Definition. Let 17 be a rational permutation on 
(0, l,... ,2k - l} with bit permutation rr. Denote 
K=(l)..., k}, C={l,..., logp}, and F=lk- 
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log I+ l,..., k}. Let C(n) = (i E C: 5-G) @ Cl 

and F(n) = {i E F: r(i) P F}. Define c(n), the 
course crossing number of IJI, by c(n) = I C(n) I 
and f(n), the fine crossing number of U, by 
f(n) = I F(17) I. Define pL(IT), the crossing num- 
ber of IT, by p(n) = min(c(lll), f(I7)). 

Theorem 2.1. Let IL be a rational permutation. 
The Block PRAM complexity of performing 17 con- 
servatively on n = 2k consecutive locations in 
shared memory is 

@(n/p + nu(n)/( p log(2n/tp))) ifrP G n, 

@(l+fu((n)/log(2lp/n)) cflp>n. 

This theorem improves results in [2] by giving 
complexity bounds for each rational permutation 
rather than worst-case bounds for the class of 
rational permutations. We prove first the upper 
bound and then the lower bound. 

Lemma 2.2. Let Il be a rational permutation. A 
Block PRAM can perform IT conservatively on 
n = 2k consecutive locations in shared memory in 
time 

O(n/p +nu(n)/( p W2n/Ip))) iflp Gn, 

0(~+1~(l7)/log(2lp/n)) iflp>n. 

Proof. Case 1: Ip < n. We may assume lp G n/2, 
affecting our bounds by at most a constant factor. 
We perform a sequence of basic rational permu- 
tations of one of the following forms: 

l Rational permutations C where a(i) = i for 
i E C. Each processor reads and permutes a 
block of size n/p and writes it back. 

l Rational permutations .YZ where o(i) = i for 
i E F. Each processor reads n/lp blocks of size 
1 and writes them into their new locations. 

Each basic permutation can be performed in 
time O(n/p). 

Assume c(n) <f(n); the case f(n) < c(n) is 
analogous. Let S = K \ (C U F) f @. In one basic 
permutation, any I S I (or fewer) bit positions can 
be moved from C(n) into S; in a second basic 
permutation, they can be moved to their images 
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under rr. When all of C(n) has been moved in Lemma 2.3. Let IT be any (not necessarily ratio- 
this way, two more basic permutations suffice to nal) permutation on (0, 1,. . . , n - l}. Any conser- 
map the remaining positions in C and K \ C to vative Block PRAM algorithm for performing II on 
their images under r. The number of basic per- n consecutive locations in shared memory requires 
mutations required is time 

Case 2: lp > n. We may assume lp & 2n, affect- 
ing our bounds by at most a constant factor. We 
use the same basic permutations as above. Each 
basic permutation can be performed in time O(I). 

Assume c(n) <f(n); the case f(n) <c(n) is 
analogous. Let T = C n F # @. In one basic per- 
mutation, any I T I (or fewer) bit positions can be 
moved from x-‘(C(n)) into T; in a second basic 
permutation, they can be moved to their images 
under r. When all of ~‘(C(nj) has been moved 
in this way, two more basic permutations suffice 
to map the remaining bit positions in C and 
K \ C to their images under r. The number of 
basic permutations required is 

n(n/p + (n log I- @(n, I)) 

/(lp log(24Ip)))) 

forlp<nandl<p, 

fl(n/p + (n log p - @(n, p)) 

/(lp W2n/(W))) 

forlp<nandp<l, 

a( I+ I( n log(n/p) - @(n, n/p)) 

/(n W2lp/n))) 

forlp>nandlgp, 

fi(Z+l(n log(n/l) -@(IL, n/l)) 

2[ l~~‘(C(n)) l/IT11 
=2fc(n)/lTI] +2 

/(n log(2lp/n))) 

forlp>nandp<l. 

= O(c(II)/log(2lp/n)). 0 

The lower bound uses a potential function 
argument first used in 121 to prove the lower 
bound for transposing a square matrix on the 
Block PRAM. The argument can be stated in the 
following definition and lemma. 

Definition. Let A = {O, 1,. . . , n - 11, let m I n and 
let A be divided into n/m segments A,, . . . , 
A n,m_l each of length m: Ai = {im, . . . , (i + 1)m 
- 1). Let n be any (not necessarily rational) 
permutation on A. For 0 Q r,s <n/m - 1, let 
x,,,(ZI, m) = I IRA,) n A, I. (x,,,(IJ, m) denotes 
the number of elements that are mapped from 
A, to A,.) Define @(17, m), the m-wise potential 
of II, by 

Proof (sketch). Our notation @(n, m) is the same 
as the initial value of the potential function in the 
proof of [2, Theorem 3.31; the final value of the 
potential function must be n log m. Without loss 
of generality, any conservative Block PRAM algo- 
rithm can be divided into distinct, alternating 
read rounds and write rounds each taking time 
O(I) to access the shared memory. The increase 
in the potential after r rounds is shown in [21 to 
be at most 1p1 log(2n/(Zp)) for lp <n, m = 
min(E, p), and at most rn(log(2lp/n)) for Zp > n, 
m = min(n/l, n/p). Cl 

Lemma 2.4. Let IT be a rational permutation on 
(0, 1,. **, n - l} with n = 2k. Let m = 2’ with j < k. 
Let G(m) = {k -j + 1,. . . , k), let GW, m) = ii E 
G: r(i) E G(m)) and let g(ll, m) = I GUI, m> I. 
Then @(IL, m) = n log m - ng(IL, m). 

n/m-l n/m-l 

@(n, m> = C C CXL 4 

s=o r=O 

X log x~,(~, m) 

(the notation x:~ indicates that the sum is taken 
over positive x,,, only). 

Proof. Let r,s E {O, . . . , 2k-i - 1) = (0 l}k-i. Then 
by a simple counting argument, ;,,,(n, m) = 
I IRA,) nA, I 

= 0 if there is an i with 1 G i,rr(i> <k -j and 
the ith bit of r is not s(&)>; 

= 2i_g(n*m) othemise. 
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Moreover, for a given S, there are exactly 
2g(“,“’ choices of r for which ~~~(17, m> is 
nonzero. Hence 

@(IT, m> 
n/m-l n/m-l 

= c c X,+lJK m> log &!JK m> 
s=O r=O 

n/m-l 

=c2 g(n, m)(2i-g(II, m) log 2j-g(“. “1) 

s=ll 

= (n/m)29 -g(D, m>) 

=Iz log m -ng(lJI, m). q 

Corollary 2.5. Let II be any rational permutation 
on (0, 1, . . . , n - l}. Any conservative Block PRAM 
algorithm for performing II on n = 2k consecutive 
locations in shared memory requires time 

a( n/p + w(n)/( p log(2n/lp))) if lp G n, 

fi(l+lp(Z7)/log(2fp/n)) ifpl>n. 

This completes the proof of Theorem 2.1. 

Corollary 2.6. The Block PRAM complexity of 
transposing an a x b matrix conservatively on n = 
2k consecutive locations in shared memory is 

@(n/p + n log min( p, 1, a, b) 

/(P log(2VVp)))) 

if lp Gn, 

@(I + 1 log min( p, 1, a, b)/log(2lp/n)) 

if lp > n. 

The crossing numbers of some frequently used 
examples of rational permutations are evaluated 
in Table 1. For convenience, we assume k is 
even. 

3. Conclusions 

A unique feature of the Block PRAM as a 
shared-memory model of parallel computation is 
that it provides a complexity theory of permuta- 
tions. In this paper, we have characterized the 
Block PRAM complexity of important classes of 
permutations. 

Our results can be extended. Consider the 
linear permutations IIM on (0, l)k which defined 
by D,(X) = Mx, where M is a nonsingular k x k 
O-l valued matrix and arithmetic is modulo 2. Up 
to a constant factor, linear permutations are no 
harder to perform than the most difficult rational 
permutations (e.g., bit reversal), see [4,5]. Ratio- 
nal permutations are a special case of linear 
permutations where M is a permutation matrix, 
so that this result is tight. Linear permutations 
have applications to hashing [4,81 and skewing 
[5,6] techniques, which provide for parallel mem- 
ory access. 

The potential function argument used in this 
paper (Lemma 2.3) is essentially information-the- 
oretic, and there is much room for improved 
lower bounds for specific permutations. We be- 
lieve that this complexity theory of permutations 
has intrinsic combinatorial interest as well as 
application to the development of high perfor- 
mance, massively parallel computers. 

Table 1 

Permutation 17 

Identity 

Perfect shuffle 
jth power of shuffle 

I X s matrix transpose 

n’/* X n”’ transpose 
Bit reversal 

Bit shuffle 

Shuffled row-major 
j-way shuffled row-major 

[L...,kl 
[k, l,...,k -11 

[k-j+l,...,k-j] 
[k-logr,...,k-logr-l] 
[k/2,...,k/2-11 
[k,...,ll 
[1,3 ,_.., k-1,2,4 ,..., k] 
[l, k/2+1,2 ,..., kl 
[l, k/j+l,2k/j+l,._., k] 

0 

min(log p, log l.ljl, k - ljl) 
log min(p, 1, r, s) 
log min( p. 0 

log min(p, 1) 

log min(p, I) 

log min(p, 0 

log min(p, 1) 
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